
Analyzing the Memory Management Semantic and Requirements of the
Real-time Specification of Java JSR-0000001 ∗

M. T. Higuera-Toledano
DACYA, Facultad de Informática, Universidad Complutense de Madrid

Ciudad Universitaria, Madrid 28040, Spain
mthiguer@dacya.ucm.es

Abstract

The RTSJ memory model proposes a mechanism based
on a scope three containing all scope-stacks in the system
and a reference-counter collector. In order to avoid refer-
ence cycles among regions on the scope-stack, RTSJ defines
the single parent rule. The given algorithms to maintain
the scope-stack structure are not compliant with the defined
parentage relation. More over, the suggested algorithms to
maintain the single parent rule makes the application be-
haviour non-deterministic. This paper provides an indepth
analytical investigation of the RTSJ requirements effecting
the RTSJ defined parentage relation, and propose alterna-
tive approaches to avoid the indeterminism problem.

1. Introduction

One of the main advantages of using high-level lan-
guages is that the programmer must not deal with many
low-level resource allocation issues. Unfortunately, for em-
bedded real-time systems there is a conflict. The memory
management is one of the major issues that needs research
when considering the extension of Java for real-time. Im-
plicit garbage collection has always been recognized as a
beneficial support from the standpoint of promoting the de-
velopment of robust programs. However, this comes along
with overhead regarding both execution time and mem-
ory consumption, which makes (implicit) garbage collec-
tion poorly suited for small-sized embedded real-time sys-
tems. Although there has been extensive research work in
the area of making garbage collection compliant with real-
-time requirements, there is still problems to use this tech-
nique in time-critical systems. An alternative to the classi-
cal Garbage Collector is to use region-based memory allo-
cation (e.g., [3]), which enables grouping related objects
within a region. This technique, commonly called Mem-

∗Ministry of Education of Spain (CICYT); Grant Number
TIC2003–01321

ory Regions (MRs) is used explicitly in the program. This
is an intermediate solution between explicit memory allo-
cation/deallocation (e.g., malloc() and free() in C) and
garbage collection.

RTSJ [8], which use in mission critical systems is cur-
rently being evaluated in a number of projects such as [3],
combines MRs within which objects are not collected, and
a GC within the heap. The only way to offer real-time guar-
antees is by turning off the GC during the execution of crit-
ical real-time threads. In order to do that, critical real-time
threads only allocates objects outside the heap and cannot
reference objects within the heap. Then, RTSJ introduces
immortal and scoped MRs, which are outside the Java heap
and objects within they are not subject to garbage collection
(see Figure 1).

VTMemory LTMemory LTPhysicalMemoryVTPhysicalMemory

HeapMemory ImmortalMemory ScopedMemory ImmortalPhysicalMemory

MemoryArea

Figure 1. The MemoryArea hierarchy in RTSJ.

In order to define the semantic across the classes sup-
porting memory regions, RTSJ [8] gives a list of 16 re-
quirements (see Figure 2). From our point of view, the
(3.) requirement that introduces a scope stack structure sup-
porting the nested scoped region and a parentage relation,
are in conflict with the requirements (5.) that establish an-
other parentage relation. In this paper we review the RTSJ
memory management semantic and requirements for nested
scoped memory regions, we study and analyze this coher-
ence problem and propose alternative approaches.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Requirements (1.) and (2.)
relate respectively to the execution time taken for both object allocation
within memory regions and object constructors.

Requirement (3.)
relates about a stack-based structure of enclosing scopes.

Requirement (4.)
establishes the memory region where an object is allocated.

Requirement (5.)
establishes a parentage relation among scoped regions.

Requirements (6.) and (7.)
establish that a scoped region have exactly zero or one.

Requirements (8.) and (9.)
establish the lifetime of objects allocated within scoped regions parent.

Requirement (10.)
establishes the lifetime objects allocated within the immortal region.

Requirements (11.) and (14.)
relate to critical tasks (i.e., NoHeapRealtimeThread instances).

Requirements (12.) and (13.)
stablish that there are only one object instance of both the heap and
immortal memory.

Requirements (15.) and (16.)
impose some assignments rules to avoid dangling pointers.

Figure 2. Memory Requirements of RTSJ.

1.1. Background

This subsection relates to requirements (4.), (8.), (9.), (10.),
(12.), (13.), (15.), and (16.) 1.

In the RTSJ memory model, there is only one object in-
stance of the heap and the immortal region in the system
(requirement (12.) and (13.)), which are resources shared
among all threads in the system and whose reference is
given by calling the instance() method. In contrast, for
scoped and immortal physical regions several instances can
be created by the application. An application can allocate
memory into the system heap, the immortal system memory
region, several scoped memory regions, and several immor-
tal regions associated with physical characteristics. Several
related real-time threads, can share a memory region, and
the region must be active until at least the last thread has
exited (requirements (8.), (9.), and (13.)). Objects allocated
within an immortal region live until the end of the applica-
tion, and are never collected (requirements (10.)).

The default memory region is either the heap or the im-
mortal memory region. Also, the initial default memory
allocation area of a real-time thread can be specified when
the thread is constructed. The active region associated with

1Requirements (3.), (5.), (6.), and (7.) are studied in the rest of this
paper. And requirements (1.), (2.), (11.), and (14.) are not treated in this
paper

the real-time thread changes when executing the enter()

method, which is the mechanism to activate a region. This
method associates a memory area object to a real-time
thread during the execution of the run() method of the ob-
ject passed as parameter (requirement (4.)). Also, a real-
time thread can allocate outside the active region by per-
forming the newInstance() or the newArray()methods.
Since the lifetime of objects allocated in scoped regions is
governed by the control flow. Strict assignment rules placed
on assignments (requirement (15.) and (16.)),to or from
memory regions prevent the creation of dangling pointers
(i.e., references from an object to another one within a po-
tentially shorter lifetime). Then, we must ensure that the
following conditions are checked before executing an as-
signment:

• Objects within the heap or an immortal region cannot
reference objects within a scoped region.

• Objects within a scoped region cannot reference
objects within a non-outer scoped region.

Illegal assignments must be checked when executing in-
structions that store references within objects or arrays. The
IllegalAssignment() exception throws when detecting
an attempt to make an illegal pointer. Since assignment
rules cannot be fully enforced by the compiler, some dan-
gling pointers must be detected at runtime, which requires
the introduction of write barriers; that is, to introduce a
code checking for dangling pointers when creating an as-
signment.

1.2. Paper organization

In this paper we review the RTSJ memory management
semantic and requirements for nested scoped regions, con-
sidering and analyzing coherence among RTSJ memory
management requirements and race carrier conditions, and
we give some guidelines for several alternative approaches
in other to solve both problems (Section 2). Finally, we of-
fer some conclusions (Section 3).

2. Analyzing requirements for nested regions

This section shows that requirements (3.) and (5.) are in-
compatible.

The requirement (3.) associates to every real-time thread
a stack that keeps track of the scoped region that can be
accessed by the real-time thread. And also establishes the
suggested algorithms for maintaining the scope structure. It
is formulated as follows (see [8], pag. 72):

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

“The structure of enclosing scopes is accessible through a
set of methods on RealtimeThread...The algorithms for
maintaining the scope structure are given in Maintaining
the Scope Stack”.

“The Single Parent Rule” section of the RTSJ-document
gives the algorithms to implement the four operations af-
fecting the scope stack (see [8], pag. 73-75): (i) the
enter() method in the MemoryArea class, (ii) the con-
struction of a new RealtimeThread object, (iii) the
executeInArea() method in the MemoryArea class, and
(iv) the newInstance()method in the MemoryArea class.
The suggested algorithms for the four above operations
guarantees that once real-time thread has entered a set of
scoped regions in a given order, any other real-time thread
will have to enter them in the same order. At this time, if
the scope region has no parent, then the entry is allowed.
Otherwise, the real-time thread entering the scoped region
must have entered every proper ancestor of it in the scope
stack. The suggested RTSJ algorithm that perform this test
have a time complexity of O(n). This parentage relation is
given on the “Maintaining the Scope Stack” section of the
RTSJ-document, that can be formulated as follows (see [8],
pag. 75):

“If a scoped region is not in use, it has no parent. For all
other scoped objects, the parent is the nearest scope out-
side it on the current entered scoped region stack. A scoped
region has exactly zero or one parent.”

Note that it is possible for a scoped region to have several
parents along its live. The reference-counter of a scoped
region is incremented/decremented each time a real-time
thread enters/exits the region or an inner one (see [8], pag.
76). When the reference-counter of a scope region is zero,
a new nesting (parent) for the region will be possible.

Taken into account the (5.) requirement, it is not possi-
ble for a scoped region to have more than one parent. The
requirement is formulated as follows (see [8], pag. 72):

“The parent of a scoped memory area is the memory area
in which the object representing the scoped memory area is
allocated”

Then, the RTSJ suggested algorithms to maintain the scope
stack are not compliant with the parentage relation defined
by the (5.) requirement. Also, the parentage relation de-
rived from the (3.) requirement is considerably more com-
plex than the defined by the (5.) requirement. Some given
approach as [9] and [5] use a stack-based algorithm to de-
termine illegal assignments. Moreover, the new version of
RTSJ (i.e, the JSR-282), the RTSJ reference implementa-
tion, and the guidelines given by some members of the RTSJ
to write programs in real-time Java (e.g., [6] [2]) do not

complies with the requirement (5.). Another problem, is
that the requirement (3.) together with the single parent rule
introduce race carrier conditions, as we can see in the fol-
lowing subsection.

3. The parentage relation

In this section, we tray to ask the following question:
“Given a scoped region, what memory region is its nested
outer scoped (i.e., its parent)?”

Taken into account the illegal references rules, this is a es-
sential question to determine dangling pointers. The single
parent rule establishes a nested order for scoped regions and
guarantees that a parent scope will have a lifetime that is at
least that of its child scopes. The problem hence is that the
RTSJ suggested implementation of the single parent rule is
not compliant with is definition. In this section, we analyze
and study both type of requirements, those establishing the
parentage relation and those suggesting the implementation
support for scoped regions.

3.1. Analyzing the (3.) requirement

This subsection avoids the requirements (5.), and shows that
the requirements (3.), (6.), and (7.) give a not good ap-
proach2.

Consider two scoped regions: A and B, and two real-time
threads τ1 and τ2. Where the real-time thread τ1 enters re-
gions in the following order: A and B, whereas τ2 enters
regions as follows: B and A. Let us suppose that τ1 and τ2

have entered respectively the A and B regions and both stay
there for a while. In this situation, the application have two
different behaviours:

• When τ1 tries to enter the B scoped region
violates the single parent rule, raising the
ScopedCycleException() exception (see Fig-
ure 3.a).

• When τ2 tries to enter the A scoped region
violates the single parent rule, raising the
ScopedCycleException() exception (see Fig-
ure 3.b).

More over:

• If τ1 enters A and B before τ2 enters B, then it is τ2

which can violate the single parent rule (see Figure
4.a).

• But, if τ2 enters B and A before τ1 enters A, when τ1

tries to enter A, violates the single parent rule (see Fig-
ure 4.b).

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

A

B

Heap Heap

B

SP of T1 SP of T2

a. τ1 violates the single parent rule.

A

Heap Heap

B

A SP of T2SP of T1

b. τ2 violates the single parent rule.

Figure 3. Example of race carrier conditions

A

Heap

B

B

Heap

SP of T1

SP of T2

a. τ2 violates the single parent rule.

Heap Heap

A B

A

SP of T1

SP of T2

b. τ1 violates the single parent rule.

Figure 4. Example of race carrier conditions

The single parent rule is not violated and the application
gives the correct result in the following cases:

• τ1 enters A and B, and exits both regions before τ2 en-
ters B and A.

• τ2 enters B and A, and exits both regions before τ1 en-
ters A and B.

• τ1 enters A and B, τ1 exits B before τ2 enters it, and τ1

exits A before τ2 tries to enter it.

• τ2 enters B and A, τ2 exits A before τ1 enters it, and τ2

exits B before τ1 tries to enter it.

The application can give the correct results or raising and
exception depending on carrier conditions. Also the excep-

2Requirements (3.) and (5.) are not compatible

tion throws in four different cases, which makes the appli-
cation program hard-debugged.

Another source of indeterminism is the scope stack.
Since real-time applications require putting boundaries on
the execution time of some piece of code, and the depth
of the scoped region stack associated with the real-time
threads of an application are only known at runtime; the
overhead introduced by write barriers checking the assign-
ment rules is unpredictable. In order to fix a maximum
boundary or to estimate the average write barrier overhead,
we must limit the number of nested scoped levels that an
application can hold. This unpredictability can make it im-
possible to establish bounds for the time taken by service
requests in a distributed real-time Java solution [1]. Then,
this parentage relation among scoped regions presents sev-
eral problems:

(i) It requires an unfamiliar programming model, because
the parentage relation is not trivial: there are orphans
regions and the parent of a region can change along its
life.

(ii) It requires checking for the single parent rule each time
a real-time thread is created/destroyed, enters/exits
a region, or executes the executeInArea() or
newInstance() method.

(iii) It introduces higher overhead: the algorithms check-
ing for the single parent rule and illegal references are
stack-based, which have a time complexity of O(n).

(iv) It is not time-predictable, thus the introduced overhead
must be bounded.

(v)It presents race carrier conditions, which gives a non-
deterministic behavior, that is contradictory with real-
time systems [4].

(vi) It does not compliant with the (5.) RTSJ.

3.2. Avoiding race carrier conditions

In this subsection, we considerer the requirements (5.), (6.),
and (7.), avoiding the (3.) requirement.

Note that the requirement (5.) establishes the parent of a
scoped region at creation time, and does not change along
the live of the region. As consequence there are not “or-
phan” regions or regions “adopted” several times. Con-
sider two scoped regions: A and B, which have been created
as follows, the A region has been created within the heap,
the B region has been created within the A region. Then,
the creation of the A and B scoped regions gives the follow-
ing parentage relation: the heap is the parent of A, and the

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

region A is the parent of B. Let us further consider two real-
time threads τ1 and τ2, we suppose that the real-time thread
τ1 has entered A, and τ2 has entered B (see Figure 5).

A

B

Heap

SP of T1

SP of T2

Figure 5. Scope-stack of τ1 and τ2.

Let us further suppose either of the following cases:

• τ1 enters B, at different than those that occur in RTSJ,
the single parent rule is not violated, and the scoped
stack associated to both the real-time thread τ1 and τ2

includes the A and B scoped regions (see Figure 6.a).
Then pointers from objects allocated in A to objects
allocated in B are dangling pointers.

• τ2 enters A. Then, The scoped stack associated to the
real-time thread τ2 includes only the A scoped regions.
Then, even if τ2 has entered B before entering A, point-
ers from objects allocated in A to objects allocated in
B are dangling pointers, as consequence they are not
allowed (see Figure 6.b).

A

B

Heap

SP of T1 and T2

A

Heap

SP of both T1 and T2B

a. τ1 enters B. b. τ2 enters A.

Figure 6. Scope-stack of τ1 and τ2.

Regarding assignment rules, we found no problem for
pointers from B to A created as consequence of the τ2 execu-
tion. Then, the following situation is stable independently
of the real-time thread who makes the reference: only point-
ers into the heap or an immortal region, or pointers from B
to A are allowed (i.e., pointers from objects allocated in A to
objects allocated in B are dangling pointers, as well pointers
from the heap or an immortal region to A and B).

We consider another situation: the real-time thread τ1

enters into scoped region A creates B and C. Then, τ1 enters
into scoped regions B and C. Then, only references from
objects allocated within B or C to objects within A are al-
lowed. Note that it is not possible for τ1, or for other real-
time threads, to create a reference from an object within B
to an object within C, and vice-versa from an object within
B to an object within C; even if τ1 must exit the region C
before to exit the region B.

4. Conclusions

In this paper, we have analyzed the RTSJ specification,
given an indepth study of the memory management require-
ments. We show that there are requirement that need a re-
vision because there are some incoherencies among them.
The (5.) requirement establishes that scoped memory re-
gions are patented at creation time. However the guidelines
given by the (3.) requirement to support and maintain the
parentage relation, explicitly violates the (5.) requirement,
which implicitly establishes a different parentage relation.
In the suggested implementation algorithms, scoped mem-
ory regions are patented when a real-time thread changes
the active memory region (i.e., each time a real-time thread
is created/destroyed or enters/exits a region). This parent-
age relation together with requirement (6.) and (7.) re-
sult in a non-deterministic application behaviour. In order
to solve this problem, we give two alternative approaches:
one of them complies with the simple parent rule and avoid
the scope stack; the other complies with the scoped stack,
avoiding the single parent rule. The memory model of the
former approach is less flexible than the RTSJ suggested
implementation. By opposite, the memory model of the
second approach is more flexible than the RTSJ suggested
implementation, allowing scoped region cycles. We are in-
vestigating now these approaches.

References

[1] A. Corsaro and R.K. Cytron. Efficient Reference Checks for
Real-time Java. ACM SIGPLAN LCTES, 2003.

[2] A. Wellings. Concurrent and Real-Time Programming in
Java. Wiley, 2004. http://www.rtj.org.

[3] D. Gay and A. Aiken. Memory Management with Explicit
Regions. PLDI ACM SIGPLAN, 1998.

[4] M.T. Higuera. Towards an Understanding of the Behavior of
the Single Parent Rule. IEEE RTAS, 2005.

[5] M.T. Higuera, V. Issarny, M. Banatre, G. Cabillic, J.P. Lesot,
and F. Parain. Region-based Memory Management for Real-
time Java. IEEE ISORC, 2001.

[6] P.C. Dibble. Real-Time Java Platform Programming. Prentice
-Hall, 2002. http://www.rtj.org.

[7] The Real-Time for Java Expert Group. ADDISON-WESLEY,
2000. http://www.rtj.org.

[8] The Real-Time for Java Expert Group. Real-Time Spec-
ification for Java. Technical report, RTJEG, 2002.
http://www.rtj.org.

[9] W.S. Beebe and M. Rinard. An Implementation of Scoped
Memory for Real-Time Java. EMSOFT, 2001.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

